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1 Overview

We developed new optimization-based methods for stochastic planning that offer better performance and
better convergence guarantees compared to the state-of-the-art AI methods. In AI, reinforcement learn-
ing algorithms have proved useful in many complex domains, such as resource management and planning
under uncertainty. These algorithms are often iterative—they successively approximate the solution based
on a set of samples and features. Although these iterative algorithms can achieve impressive results in
some domains, they have substantial drawbacks: they often require extensive parameter tweaking to work
well and provide only weak guarantees of solution quality. Some of the most interesting reinforcement
learning algorithms are based on approximate dynamic programming (ADP). ADP, also known as value
function approximation, approximates the value of being in each state. This project produced new reliable
algorithms for ADP that use optimization instead of iterative improvement. Because these optimization-
based algorithms explicitly seek solutions with favorable properties, they are easy to analyze, offer much
stronger guarantees than iterative algorithms, and have few or no parameters to tweak. In particular,
we derive approximate bilinear programming—a new robust approximate method. The strong guarantees
of optimization-based algorithms not only increase confidence in the solution quality, but also make it
easier to combine the algorithms with other ADP components, most notably samples and features used
to approximate the value function. Relying on the simplified analysis of optimization-based methods, we
derived new bounds on the error due to missing samples. These bounds are simpler, tighter, and more
practical than the existing bounds for iterative algorithms and can be used to evaluate solution quality in
practical settings. Finally, we developed homotopy methods that use the sampling bounds to automatically
select good approximation features for optimization-based algorithms. Automatic feature selection signif-
icantly increases the flexibility and applicability of the developed ADP methods. The methods developed
in this project can be used in many practical applications in artificial intelligence, operations research,
and engineering. Our experimental results show that optimization-based methods may perform well on
resource-management problems and standard benchmark problems and therefore represent an attractive
alternative to traditional iterative methods.
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2 Summary of Research Challenges and Accomplishments

Automatic planning in large domains is one of the hallmarks of intelligence and a core research area of
artificial intelligence. Being able to adaptively plan in an uncertain environment can significantly reduce
costs, improve efficiency, and relieve human operators from many mundane tasks. We targeted a range
of applications represented by the following two domains that illustrate the utility of automated planning
and the challenges involved.

One application is management of blood inventories. In this domain, a blood bank aggregates a supply
of blood and keeps an inventory to satisfy hospital demands. The hospital demands are stochastic and
hard to predict precisely. In addition, blood ages when it is stored and cannot be kept longer than a few
weeks. The decision maker must decide on blood-type substitutions that minimize the chance of future
shortage. Because there is no precise model of blood demand, the solution must be based on historical
data. Even with the available historical data, calculating the optimal blood-type substitution is a large
stochastic problem.

Another application is managing water reservoirs. In this domain, an operator needs to decide how
much and when to discharge water from a river dam in order to maximize energy production, while
satisfying irrigation and flood control requirements. The challenges in this domain are in some sense
complementary to blood inventory management with fewer decision options but greater uncertainty in
weather and energy prices.

Many practical planning problems such as the ones mentioned above are solved using domain-specific
methods. This entails building specialized models, analyzing their properties, and developing specialized
algorithms. For example, blood inventory and reservoir management could be solved using the standard
theory of inventory management. The drawback of specialized methods is their limited applicability.
Applying them requires significant human effort and specialized domain knowledge. In addition, the
domain can often change during the lifetime of the planning system. Domain-specific methods may also
be inapplicable if the domain does not clearly fit into an existing category. For example, because of the
compatibility constraints among blood types, blood inventory management does not fit well the standard
inventory control framework. In reservoir management, the domain-specific methods also do not treat
uncertainty satisfactorily, nor do they work easily with historical data. This project produced general
planning method that are easy to apply to a variety of settings as an alternative to domain-specific ones.
Having general methods that can reliably solve a large variety of problems in many domains would enable
widespread application of planning techniques.

In this project, we used Markov decision process (MDP) to represent complex sequential decision
making problems. Although MDPs are easy to formulate, they are often very hard to solve. Solving large
MDPs is a computationally challenging problem addressed widely in artificial intelligence (particularly
reinforcement learning), operations research, and engineering literature. It is widely accepted that large
MDPs can only be solved approximately. Approximate solutions may be based on samples of the domain,
rather than the full descriptions.

An MDP consists of a set of states, S, and a set of actions, A. After each action is taken, a stochastic
state transition occurs and a reward is given to the decision maker that depends on the action and outcome.
The solution of an MDP is a policy ßthat assign an action to each state. A related solution concept is
the value function, v, which represents the expected value of being in every state. A value function can
be easily used to construct a greedy policy. It is useful to study value functions, because they are easier
to analyze than policies. For any policyß, the policy loss is the difference between the return of the policy
and the return of an optimal policy. Because it is often not feasible to compute an optimal policy, the goal
of this project has beento compute a policy with a small policy loss.

Approximate methods for solving MDPs can be divided into two broad categories: 1) policy search,
which explores a restricted space of all policies, 2) approximate dynamic programming, which searches a
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restricted space of value functions. While all of these methods have achieved impressive results in many
domains, they have significant limitations that we address is this project.

Policy search methods rely on local search in a restricted policy space. The policy may be represented,
for example, as a finite-state controller or as a greedy policy with respect to an approximate value function.
Policy search methods have achieved impressive results in such domains as Tetris and helicopter control.
However, they are notoriously hard to analyze. We are not aware of any theoretical guarantees regarding
the quality of the solution.

Approximate dynamic programming (ADP)—also known as value function approximation—is based
on computing value functions as an intermediate step before computing polices. Most ADP methods
iteratively approximate the value function. Traditionally, ADP methods are defined procedurally; they
are based on precise methods for solving MDPs with an approximation added. For example, approximate
policy iteration—an approximate dynamic programming method—is a variant of policy iteration. The
procedural approach leads to simple algorithms that may often perform well. However, these algorithms
have several theoretical problems that make them impractical in many settings.

Although procedural (or iterative) ADP methods have been extensively studied and analyzed, their is
still limited understanding of their properties. They do not converge and therefore do not provide finite-
time guarantees on the size of the policy loss. As a result, procedural ADP methods typically require
significant domain knowledge to work; for example they are sensitive to the approximation features. The
methods are also sensitive to the distribution of the samples used to calculate the solution and many other
problem parameters. Because the sensitivity is hard to quantify, applying the existing methods in unknown
domains can be very challenging.

This project produced a new optimization-based approach to approximate dynamic programming as
an alternative to traditional iterative methods. Unlike procedural ADP methods, optimization-based ADP
methods are defined declaratively. In the declarative approach to ADP, we first explicitly state the desirable
solution properties and then develop algorithms that can compute such solution. This leads to somewhat
more involved algorithms, but ones that are much easier to analyze. Because these optimization techniques
are defined in terms of specific properties of value functions, their results are easy to analyze and they
provide strong guarantees. In addition, the formulations essentially decouple the actual algorithm used
from the objective, which increases the flexibility of the framework.

The objective of optimization-based ADP is to compute a value function v that leads to a policy
with a small policy loss. Unfortunately, the policy loss as a function of the value function lacks structure
and cannot be effiefficiently computed without simulation. We, therefore, derived upper bounds on the
policy loss that are easy to evaluate and optimize. Approximate linear programming (ALP), which can
be classified as an optimization-based approach to ADP, has been proposed and studied previously. ALP
uses a linear program to compute the approximate value function in a particular vector space. ALP has
been previously used in a wide variety of settings and has shown to have better theoretical properties than
iterative approximate dynamic programming and policy search. However, the L1 norm must be properly
weighted to guarantee a small policy loss, and there is no reliable method for selecting appropriate weights.
Among other contributions, this project produced modifications of ALP that improve its performance and
methods that simultaneously optimize the weights with the value function.

Value function approximation—or approximate dynamic programming—is only one of many compo-
nents that are needed to solve large MDPs. Other important components are the domain samples and
features, or representation, used to approximate the value function. The features represent the prior knowl-
edge. It is desirable to develop methods that are less sensitive to the choice of the features or are able to
discover them automatically. It is easier to specify good features for optimization-based algorithms than
for iterative value function optimization. The guarantees on the solution quality of optimization-based
methods can be used to guide feature selection for given domain samples.

The main contribution of this project is the formulation and study of optimization-based methods for
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approximate dynamic programming. The project also investigated how these methods can be used for
representation and feature selection. The contributions are summarized below:

1. New and improved optimization-based methods for approximate dynamic programming.

(a) New bounds on the quality of an approximate value function.

(b) Lower bounds on the performance of iterative approximate dynamic programming.

(c) Improved formulations of approximate linear programs.

(d) Tight bilinear formulation of value function approximation.

2. Algorithms for solving optimization-based dynamic programs.

(a) Homotopy continuation methods for solving optimization-based formulation.

(b) Approximate algorithms for optimization-based formulations.

(c) Methods for more efficiently solving some classes of bilinear programs involved in value function
approximation.

3. Methods for selecting representation.

(a) Sampling bounds for optimization-based methods.

(b) Representation selection based on sampling bounds and the homotopy methods.

4. Connections between value function approximation and classical planning.

These outcomes are described in details in archival publications listed in the following section.

3 Publications

Note: The publications are available for download at:
http://rbr.cs.umass.edu/shlomo/

3.1 PhD Dissertations

1. Marek Petrik. “Optimization-based Approximate Dynamic Programming.” PhD Dissertation, Com-
puter Science Department, University of Massachusetts Amherst, 2010.

3.2 Journals and Conferences

1. M. Petrik and S. Zilberstein. “A Successive Approximation Algorithm for Coordination Prob-
lems.” Proceedings of the Tenth International Symposium on Artificial Intelligence and Mathematics
(ISAIM-08), Ft. Lauderdale, Florida, 2008.

2. M. Allen, M. Petrik, and S. Zilberstein. “Interaction Structure and Dimensionality in Decentralized
Problem Solving.” Proc. of the Conference on Artificial Intelligence, 2008.

3. M. Allen, M. Petrik, and S. Zilberstein. “Interaction Structure and Dimensionality in Decentral-
ized Problem Solving.” proc. of the Conference on Artificial Intelligence, 2008. Extended version
of AAAI-08 paper published as Technical Report UM-CS-2008-011, University of Massachusetts,
Amherst, 2008.
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4. M. Petrik and S. Zilberstein. “Learning Heuristic Functions Through Approximate Linear Program-
ming.” Proc. of the International Conference on Automated Planning and Scheduling (ICAPS),
248–255, 2008.

5. M. Petrik and B. Scherrer. “Biasing Approximate Dynamic Programming with a Lower Discount
Factor.” Proc. of Neural Information Processing Systems, 2008.

6. M. Petrik and S. Zilberstein. “A Bilinear Programming Approach for Multiagent Planning.” Journal
of Artificial Intelligence Research, 35:235–274, 2009.

7. M. Petrik and S. Zilberstein. “Constraint Relaxation in Approximate Linear Programs.” Proc. of
the International Conference on Machine Learning (ICML), 809–816, 2009.

8. M. Petrik and S. Zilberstein. “Robust Value Function Approximation Using Bilinear Programming.”
Proc. of Neural Information Processing Systems (NIPS), 2009.

9. M. Petrik and S. Zilberstein. “Robust Value Function Approximation Using Bilinear Programming.”
Extended version of NIPS-09 paper published as Technical Report UM-CS-2009-052, University of
Massachusetts, Amherst, 2009.

10. M. Petrik. “Robust Approximate Optimization for Large Scale Planning Problems.” AAAI Doctoral
Consortium, 2009.

11. J. Johns, M. Petrik, and S. Mahadevan. “Hybrid Least-Squares Algorithms for Approximate Policy
Evaluation.” Machine Learning, 76(2-3): 243–256, 2009.

12. M. Petrik and S. Zilberstein. “Blood Management Using Approximate Linear Programming.” Pre-
sented at INFORMS Computing Society Meeting, Charleston, SC, 2009.

13. M. Petrik, G. Taylor, R. Parr, and S. Zilberstein. “Feature Selection Using Regularization in Ap-
proximate Linear Programs for Markov Decision Processes.” Prof. of the International Conference
on machine Learning (ICML), 871–878, 2010.

14. M. Petrik and S. Zilberstein. “Robust Approximate Bilinear Programming for Value Function Ap-
proximation.” Submitted to Journal of Machine Learning Research, 2010.

15. M. Petrik and S. Zilberstein. “Linear Dynamic Programs for Resource Management.” Proc. of the
Conference on Artificial Intelligence (AAAI), 2011

4 Interactions and Transitions

The project team was very active in several conferences, symposia, panels, and journals. The main graduate
student assigned to this project, Marek Petrik, has completed his PhD dissertation and is now a postdoc
at IBM Research. Team members were engaged in several international collaborations. These interactions,
which help disseminate the results of the project, are summarized below.

4.1 Editorial Positions

1. The PI is currently the Editor-in-Chief of the Journal of Artificial Intelligence Research, one of the
top journals in the field of AI. He has been serving on the editorial board of the journal since 2002.

2. The PI serves on the editorial board of two other journals: Autonomous Agents and Multi-Agent
Systems and Annals of Mathematics and Artificial Intelligence.
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4.2 Participation in Conference and Workshop Organization

The PI and members of this project team served extensively on the program committees of the following
venues.

1. Twenty-Fifth AAAI Conference on Artificial Intelligence, July 7-11, 2011, San Francisco, California.

2. AAAI 2011 Workshop on Generalized Planning, August 8, 2011, San Francisco, California.

3. Twenty-Second International Joint Conference on Artificial Intelligence, July 16-22, 2011, Barcelona,
Spain.

4. IJCAI 2011 Workshop on Decision Making in Partially Observable, Uncertain Worlds: Exploring
Insights from Multiple Communities, July 18, 2011, Barcelona, Spain.

5. Twenty-First International Conference on Automated Planning and Scheduling, June 11-16, 2011,
Freiburg, Germany.

6. Tenth International Conference on Autonomous Agents and Multiagent Systems May 2-6, 2011,
Taipei, Taiwan.

7. Twenty-Fourth AAAI Conference on Artificial Intelligence, July 11-15, 2010, Atlanta, Georgia.

8. AAAI 2010 Workshop on Metacognition for Robust Social Systems, July 11-12, 2010, Atlanta, Geor-
gia.

9. Second International Conference on Computational Sustainability, June 28-30, 2010, Boston, Mas-
sachusetts.

10. Twentieth International Conference on Automated Planning and Scheduling, May 12-16, 2010,
Toronto, Canada.

11. AAMAS 2010 Workshop on Multi-Agent Sequential Decision Making in Uncertain Domains, May,
2010, Toronto, Canada.

12. Eleventh International Symposium on Artificial Intelligence and Mathematics, January 6-8, 2010,
Fort Lauderdale, Florida.

13. International Conference on Automated Planning and Scheduling, September 19-23, 2009, Thessa-
loniki, Greece.

14. ICAPS 2009 Workshop on Generalized Planning: Macros, Loops, Domain Control, September 20,
2009, Thessaloniki, Greece.

15. Twenty-First International Joint Conference on Artificial Intelligence, July 11-17, 2009, Pasadena,
California.

16. Eighth International Conference on Autonomous Agents and Multiagent Systems, May 10-15, 2009,
Budapest, Hungary.

17. AAMAS 2009 Workshop on Multi-Agent Sequential Decision Making in Uncertain Domains, May
11, 2009, Budapest, Hungary.

18. International Conference on Automated Planning and Scheduling, September 14-18, 2008, Sydney,
Australia.

19. ICAPS 2008 Workshop on Multiagent Planning, September 14 or 15, 2008, Sydney.

20. Twenty-Third AAAI Conference on Artificial Intelligence, July 13-17, 2008, Chicago, Illinois.

21. The First International Symposium on Search in Artificial Intelligence and Robotics, July 13-14,
2008, Chicago, Illinois.

22. AAAI 2008 Workshop on Metareasoning: Thinking about Thinking, July 13-14, 2008, Chicago,
Illinois.
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23. Seventh International Conference on Autonomous Agents and Multiagent Systems, May 12-16, 2008,
Estoril, Portugal.

24. AAMAS 2008 Workshop on Multi-Agent Sequential Decision Making in Uncertain Domains, May
12-13, 2008, Estoril, Portugal.

4.3 Other Interactions

1. The PI has maintained close collaboration ties between his lab and the MAIA group at INRIA, Nancy,
France. To advance this collaboration, INRIA has provided funding for exchange of students and
short visits. The PI has also participated in a multi-institutional NSF grant that provided additional
funding for this collaboration. These activities contributed directly to this project, particular the
joint work between our group and Bruno Scherrer from INRIA.

2. The PI is currently the president of the ICAPS Executive Council, which oversees the annual Inter-
national Conference on Automated Planning and Scheduling—the premier venue for researchers and
practitioners in the area of planning and scheduling.

5 Inventions and Patent Disclosures

None.

6 Honors and Awards

1. The PI was elected as a Fellow of the Association for the Advancement of Artificial Intelligence
(AAAI) for ”significant contributions to decision-theoretic reasoning, resource-bounded reasoning,
automated planning, decentralized decision making and multi-agent systems.” The AAAI will cele-
brate this honor at a Fellows dinner during AAAI-11 in San Francisco, California.
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